
274 KSME International Journal, Vol. 12, No. 2, pp. 274~280, 1998

A Study on Optimal Task Decomposition of
Networked Parallel Computing Using PVM

Kwanjae Seong* and Han-Gyoo Kim**
(Received October 30, 1996)

A numerical study is performed to investigate the effect of task decomposition on networked

parallel processes using Parallel Virtual Machine (PVM). In our study, a PVM program

distributed over a network of workstations is used in solving a finite difference version of a one

dimensional heat equation, where natural choice of PVM programming structure would be the

master-slave paradigm, with the aim of finding an optimal configuration resulting in least

computing time including communication overhead among machines. Given a set of PVM tasks

comprised of one master and five slave programs, it is found that there exists a pseudo-opt imal

number of machines, which does not necessarily coincide with the number of tasks, that yields

the best performance when the network is under a light usage. Increasing the number of

machines beyond this optimal one does not improve computing performance since increase in

communication overhead among the excess number of machines offsets the decrease in CPU

time obtained by distributing the PVM tasks among these machines. However, when the network

traffic is heavy, the results exhibit a more random characteristic that is explained by 1:he random

nature of data transfer time.

Key Words: Communication Overhead, Heat Equation, Networked Parallel Computing,

Network Traffic, Optimal Task Decomposition, PVM

I. Introduct ion

Parallel processing, the method of having many

small tasks solve one large problem, has recently

received much attention with increasing demand

for higher performance, lower cost and sustained

productivity, and has emerged as a key enabling

technology in modern computing. This adoption

has been facilitated by two major developments:

massively parallel processors (MPPs) and the

widespread use of distributed computing.

At present, MPPs provide the most powerful

environment under which high computational

power can be attained, combining a few hundred

to a few thousand CPUs connected to hundreds of

gigabytes of memory. (Alamasi and Gottlieb,

* Department of Mechanical Engineering, Dong
-Guk University, Seoul 100-715, Korea

** Department of Computer Engineering, Hong-lk
University, Seoul 121-791, Korea

1994) However, MPPs suffer from two draw-

backs: economy and availability.

Large MPPs typically cost more than 10 mil-

lion U. S. dollars. The cost in rurming programs

on an MPP is usually more than tenfold compar-

ed to that of running equivalent ones on a set of

networked workstations. Aside from the price of

MPPs, lack of effective compilers and application

programming interfaces (APls) further restrict

the availability of them to a lim:ited number of

users and even then they might have to spend a

considerable amount of time familiarizing them-

selves with MPPs before they are ready to tackle

real problems. (Anderson et al., 1995)

On the other hand, distributed computing over

networked workstations is gaining its edge over

MPPs because of its widespread availability and
economic advantage. Distributed ,computing pro-

vides well defined APls easily applicable to vari-

ous programs as well as effective compilers over a

network of workstations, resulting in cost effec-

A Stud)' on Optimal Task Decomposition of Networked Parallel Computing Using P VM 275

tive solutions.

PVM (Parallel Virtual Machine) is one of the

most promising distributed computing systems

available, and may be applied to a network of

heterogeneous workstations (Sunderam et. al.

1990). PVM provides easy to program APIs

through which complex and CPU intensive scien-

tific problems, such as global climate modeling

and new drug design, can be solved without

relying on expensive MPPs by decomposing them

into a set of simple tasks manageable on a work-

station or even a PC.

PVM, however, suffers from an inherent prob-

lem of overhead due to communication between

tasks, since each task in a PVM program needs to

exchange data with others distributed over the

network. A seemingly optimal decomposition in

the traditional sense will not guarantee an opti-

mal solution under the PVM environment, espe-

cially if such decomposition entails more commu-

nication overhead than performance gain. There-

fore, it is necessary to investigate how a large

problem should be decomposed into a set of PVM

tasks which will produce the most performance

gain taking into account the communication

overhead.

Objective of this study is not in any specific

engineering problem itself but to perform a par-

ametric numerical experiment with PVM on its

performance by solving a transient one dimen-

sional heat conduction problem. In this paper, we

present our experience with PVM in pursuit of

finding a pseudo-optimal decomposition of PVM

tasks for the specific problem of a one dimen-

sional heat diffusion. It will only be a pseudo

-optimal, since communication overhead is

affected by nondeterministic factors such as actual

data transfer rate and the network load at time of

execution. We will investigate how total execu-

tion time of a finite difference program processed

in parallel varies as number of homogeneous

machines on a network is varied along with the

effects of discretization size in both space and

time.

2. PVM: Parallel Virtual Machine

The past several years have witnessed an ever-

increasing acceptance and adoption of parallel

processing for high performance scientific

computing. Furthermore, the message passing

model appears to be gaining predominance as the

paradigm choice of parallel programming. PVM

is a software infrastructure that emulates a gener-

alized distributed memory multiprocessor in het-

erogeneous networked environment. PVM sup-

ports a straightforward but functionally complete

message passing model (McByran, 1994), and is

capable of harnessing the combined resources of

typically heterogeneous networked computing

platforms to deliver high levels of performance

and functionality.

Parallel computing using PVM may be approa-

ched from three fundamentally different view-

points based on the organization of computing

tasks. (Kim et al. 1996) The first and the most

common model for PVM applications can be

termed crowd computing, where a collection of

loosely related processes, typically executing the

same code, performs computations on different

portions of the workload usually involving peri-

odic exchanges of intermediate results. The sec-

ond model supported by PVM is termed a tree

computation, in this scenario, processes are

dynamically spawned in a tree-like manner. This

paradigm is a natural fit to applications where the

total workload is not known a priori, for example

as in recursive divide-and-conquer algorithms.

The third model termed hybrid is a combination

of the tree and the crowd model.

As mentioned above, PVM provides various

methods of task decomposition that fit into mod-

eling of diverse scientific problems as well as

those of general purpose. These models assume

that any PVM task can send a message to any

other task and that there is no limit to the size or

number of such messages. It also supports

multicast of a message to a user defined group of

tasks. The choice of model will be application

dependent, and should be selected to best match

the natural structure of the parallelized program,

276 Kwanjae Seong and Han-Gyoo Kim

while taking into account the communication

overhead. Skeleton of the actual PVM program

used in our experiment is presented below, and

can be used as an example to understand PVM

user interfaces, but readers should refer to PVM

user's manual (e. g. Geist et al., 1994) for com-

plete understanding of PVM APls.

3. Numerical Experiment with
Heat Equation

In this section we present a PVM program that

calculates heat diffusion in a thin wire by solving

the finite difference version of a one dimensional

heat equation. To accomplish our aim, as

mentioned in the introduction, it suffices that we

choose to analyze a most simple problem prefer-

ably to which an analytic solution is also avail-

able.

Consider a thin wire of length L, density p,

specific heat c and thermal conductivity k with

the ends of the wire maintained at a fixed temper-

ature of Te and an initial temperature profile of:

�9 [\ 2 :
T (z, r = O) = T~ + To sln~Tc~-) (1)

With the usual non-dimensionalizat ion, where A

= (T - Te) / To, t = r / L2(~ -) and x = z / L, tem -

perature in the wire is described by the following

heat equation;

32A 3A
3x 2 3t (2)

with the initial and boundary conditions of;

A (x, t : 0) = s i n (zcx) (3a)

A (x = 0 , t) = A (x = l, t) = 0 (3b)

The exact solution of Eq. (2) subject to (3a) and

(3b) can be found by the method of separation of

variables as (Meyers, 1971);

A (x, t) = e -~2' s i n (zx) (4)

Finite-difference solution to the above problem

will be sought via parallel processing and in

particular through distributed computing using

the PVM program.

We will adopt an explicit scheme with forward

differencing in time and central differencing in

space, and hence the solution can be obtained by

marching in time from a given initial temperature

distribution. If we denote A (xl, 6) as Ai,j, tem-

perature at position x; and at time tj+l can be

expressed as;

A~,j+ 1 = ~' (Ai+,,~ + A i-I.A
+ (1 - 2 ~) A i . ~ (5)

A t where ~ - - - - - ~ - and the stability criterion for

the explicit scheme requires that / ~ 1 / 2 .

For our problem, where the solution over the

whole space can be obtained through the same

equation as provided by Eq. (5), natural choice

of programming structure would be the master-

slave method of the crowd programming para-

digm where the slaves, spawned by the master

program, perform the actual computations. We

choose to divide the wire into 5 subsections, and

the solutions to each subsection will be obtained

separately by each slave programs, although it

will be required that the right most and the left

most temperature information be exchanged with

its right and left neighboring subsections. The

workload of the slaves are allocated by the master

through data decomposition whereby the initial

temperature distribution of each subsection is sent

to respective slaves.

Overall structure of the parallel processing is as

follows:

The master program spawns 5 copies of the

same slave program, each of which handles a

subsection of the wire. After receiving initial

temperature distribution, each slave computes

heat diffusion in the corresponding wire subsec-

tion. At each time step, each slave program needs

to communicate boundary information with its

left and right neighboring slaves. When a speci-

fied final time is reached, all 5 slave programs

send its final temperature profile to the master,

who then terminates the spawned slaves and ends
the program.

In order to study the effect of communication

overhead on the total CPU time, same program

was executed on 1 to 6 machines on the network.

When only one machine is used, the master

program along with all of the five slaves are

A Study on Optimal Task Decomposition of Networked Parallel Computing Using PVM 277

executed on the same processor on the same

machine, in which case there is no additional time

spent in communication over the network and can

be regarded as a serial processing. When more

than one machine is utilized, the master and the

slave programs are allocated to each machine

such that an even distribution of workload is

achieved. For example, with four machines, the

first machine handles the master program along

with one of the five slaves and the second

machine handles two slaves with the remaining

two each executing one slave program.

The finite difference PVM program was execut-

ed on six different configurations as mentioned

above with four values of Ax ranging from 1/50

to 1/1000 and four a t's for each Ax ranging

from 2.0;< 10 -4 to 6.25• 10 -8 until a preset final

time is reached. The final time was chosen such

that for each different Ax, the largest A t

results in 750 iterations and the smallest 61300.

Hence for a given Ax, total number of iterations

on Eq. (5) is inversely proportional to the size of

a t. The final temperature profile for all of the

above parameter values resulted in essentially the

analytic solution of Eq. (4). The total computing

time elapsed in carrying out this numerical experi-

ment on a network of Sun Sparc workstations

were recorded and are analyzed in the following

section.

4. Results and Discuss ions

ronment.

4.1 D a t a c o m m u n i c a t i o n overhead
To investigate the effect of data transfer over

the network on the total computing time, time

taken solely in data transfer between machines

were investigated and the results are presented in

Fig. 1. This includes time taken for PVM setup

plus network latency and data transmission. In

both cases of light and heavy traffic, it can be seen

that the increase in the amount of data will not

necessarily result in a larger communication over-

head but will be strongly dependent on the num-

ber of machines on the network. This is especially

true when the traffic is light whereas under heavy

traffic conditions it exhibits a more random

nature as may be expected. However the results of

r 2001_ - - . -

I " "
E I No. of aohin s 1

100

O| [.......... ~ 4 -----+~,-,-,- 6 ,

4 0 0 f '

300 " - . , ,. /

f. ":'~:'" ~]

10' ' ~10 ~
No.of Bytes

(a) Light traffic

Results analyzed in this section are obtained

from a group of networked Sun Sparc Classic

workstations running on Sun OS 4.2. Total

computing time, including data communication

overhead between machines, will definitely

depend on the degree of network usage at the time

of execution and numerical experiments were

carried out under two different conditions; 1)

when the network is under a light usage during

night time which will be referred to as 'light

traffic' and 2) at day time when the network is

under a typical usage of a university engineering

department referred to as 'heavy traffic'. Results

used in the analysis below are only one out of

many trials executed under similar working envi-

f 3 0 0 i ~ Q

2 0 0 b

[NO. of Machines]
1 O0 �9 2

. + 4

. . . . + - 6
0 , , , , , I , J

1 0 ' 1 0 z
No.of Bytes

(b) Heavy traffic

Fig. 1 Communication time between machines
for data transfer.

278 Kwanjae Seong and Han-Gyoo Kim

Fig. 1 clearly show that data communica t ion time

is bounded, at least with PVM and data transfer

between 2 to 6 machines. One can also deduce

that the PVM setup time is about 190 ms for our

experimental envi ronment and the data transfer

time exhibits some randomness reflecting the

characteristics of Ethernet.

4.2 Total computation time
Figs. 2 and 3 describe the total computa t ion

time versus the number of machines utilized by

the PVM program under light and heavy traffic

condi t ions respectively. The most important result

is that for all cases under light traffic, there seems

to exist a pseudo-opt imal configurat ion, i. e. least

computa t ion time, of N P : 4 , 5 or 6. And this

p seudo-op t imum becomes more pronounced as

computa t ion load increases (see Fig. 2 (d)) . This

can be explained by the fact that total computa-

t ion time is comprised of actual CPU time, which

decreases as more machines are utilized and

workload is more evenly distributed, and commu-

nicat ion overhead, which increases with NP as

more data transfers are required between more

machines. Hence total computat ion time is the

least when gains obtained from work dis tr ibut ion

minus the increase in communica t ion overhead is

the largest. For our problem it can be concluded

that this opt imum configurat ion is obtained when

4 to 6 machines are utilized. It should be remem-

bered that this analysis is based on the fact that

the programs were executed under light traffic

condi t ions and data transfer time is almost con-

stant (see Fig. 1 (a)) . Also, we can conclude that

250

200

-~150
O~
u~

~- 100

50 ~

el

�9 A t = 2 . 0 x l 0 "~
[~ x - 0 . 0 2]

- - - o - - - A t = l . 0 x l 0 "*

. ,~- . - - . . ~, t = 5 .0 x 10 "n

_ _ . O - _ _ A t - 2 .5 x 1 0 "s

0_.,.

&..
'-.-.....

~ o c - o o

NP
(a) A x : =0.02

f
200 I

,~150~

 'mol

5O

O,

�9 / X t ' 5 . 0 x 1 0 "s
I t , x - 0.01 I

- - - O - - - A t - 2 . S x 1 0 "s

. 6 . . - - . . A t - 1 .25 x 10 "s

- - - - . O - - - - A t - 6 . 2 5 x 1 0 "~

- O .

e - - = : ~ �9 .

NP

(b) AX=0.01

250

200

~ ,150
g
~- 100

50

01

Fig. 2

i i i i
�9 A t = 2 . 0 x l 0 ~

[A X - 0 . 0 0 2]
- - - O - - - A t = l . 0 x l 0 "e

. ,r A t - 5 .0 x 1 0 "7

- - - - - O - _ _ A t - 2 . 5 x 1 0 "7

0 , \

\

0 - - -0 - " ~ o - - - - - 0

A,.

o _ _ ~ c-- o (3- o o

NP

250

200

"6" 150

~-100

50

0

, i i
�9 A t - 5 .0 x l l 0 "7

[~ , x = 0 . 0 0 1]
- . - r , ~ t - 2 . 5 x 1 0 "7

. r A t - 1 , 2 5 x 10 "7

- - ~ - - - A t - 6 . 2 5 x 10 ~

O ' - - - - - Q x "

\
\ \ \

........... ~,. "o o/"

- ~ o . ~ . "G- o o

Y
g 4 g

NP

(c) AX=0.005 (d) Ax=0.001

Total computing time, T, under light traffic condition as a function of the number of machines, NP,
utilized by the task. N P = 1 corresponds to serial processing without communication overhead.

A Study on Optimal Task Decomposition of Networked Parallel Computing Using PVM 279

250

200

~.150

0- 100

�9 & t ' 2 . 0x 10 ~

[~ , x " 0 .02] - - - t :P - - & t " 1-0 x 10~

. ~ . . _ _ . ~,t ~5 .0x 10 ~

- - - ' 0 - - - & t " 2 "5x 10~

. 0 - / 0

5O
Z3 17," . . 0 0 . . . o . . . o - - -

NP

(a) a x = =0.02

f
200 f

f
~- 100

50
o o ~ . . - - ' ' ~ o - o

o, 3
NP

i r~ r I i I"

�9 / t t ' 5 . 0x 104
[Zxx - 0.01] - - - I } - - - zxl: = 2 .5 x 10 ~

. r ~ . t - 1 .25 x 10 "6

- - - 0 - - - ~ . 1 : - 6.25 x 104

Q~

\ " \ % 0 , / ~ ' 0 , . . ~ . ~ ' - 0

(b) Ax=O.Ol

250

200

~.. 150

J- 100

Fig. 3

50

Oq

i i i ~ i

�9 & t , ~2 .o x 10 ~

[&x - 0 .o02] - - - o - - - ~, t t * l l . 0 x lO '~

. 6 - . - - . t i t , , ! 5 . 0 x 10 a

, ,O . - - - 0 - - - a t ='12.5 x 10; '
s / %%

/ J , ,% . . . 0 . ~

P" W "~ ~ - - - + - - 0

o 1~ ' - 0 . _ . . - 43 " o - - - - 4J -~

NP

(c) Ax=0.O05

250

200

~.150

P- 100

5O

7 O~ 7

i r r

r & t " 5 . 0x 10 "7 "
[ax - 0.001] - - - t l - - - - t t t - 2 .Sx 10 "r

Ct% , ~ ._ . . . t t t - 1 .25 x 10 "7

``%%% - - "0 - - - ~ t = 0 .25 x 10 .1-

" ' 1~ [] 43

NP

(d) Ax=O.O01

Total computing time, T, under heavy trafic condition as a function of the number of machines, NP,
utilized by the task. NP=I corresponds to serial processing without communication overhead.

our problem is such that communication over-

head is of comparable order to actual CPU time,

especially when computation burden is not low

(e. g. for small z~x) and hence different types of

configuration do play an important role regard-

ing total computation time.

When the traffic is heavy and communication

overhead is random as depicted in Fig. l (b), total

computation time presented in Fig. 3 is also

random. When the computation load is light total

computation time shows almost no visible varia-

tions with respect to the number of machines

utilized. However, even under heavy traffic per-

formance, it is seen to improve when workload is

distributed compared to a single machine configu-

ration and especially so when the computation

burden is high.

4.3 Conclusions
In this study we performed a numerical experi-

ment over a workstation cluster connected by

Ethernet using PVM to solve a simple one dimen-

sional heat equation with the purpose of inves-

tigating how communication overhead affects the

total computation time and obtaining, if any, a

pseudo-opt imal configuration and task decompo-

sition. We found that the total computation time

including communication overhead shows quali-

tatively different characteristics depending on the

network usage at the time of program execution.

When the traffic is light and data transfer time is

relatively constant, there seems to exit an optimal

task decomposition set by decrease in CPU time

and increase in communication overhead as more

machines are utilized. However, when the traffic

280 Kwanjae Seong and Han-Gyoo Kim

is heavy with data transfer time being more ran-

dom, total computat ion time is also random

without any systematic improvement as workload

is distributed among more machines. But it is

clear that in most of the cases studied, parallel

computation is no worse than serial computation

in the worst case and shows some improvement

over serial computation in many cases.

Although the purpose of our study is in obtain-

ing the optimal task decomposition of PVM tasks

under Ethernet which is widely available and not

in finding the best network environment for PVM

programming, it is worth mentioning that the

results of our experiment will be strongly depen-

dent on the types of network subsystems such as

the ring or the ATM- l ike switch based network

which will display different characteristics of the

program behavior. From our experience with

PVM under Ethernet environment, we find that

when communication overhead is of comparable

order as CPU time, which may by true for many

types of problems, performance gains from an

optimal task decomposition compared to a more

heuristic one is such that it may not warrant an

exhaustive investigation unless the program is to

be executed under the network condition where a

light traffic is expected.

References

Alamasi, G. and Gottlieb, A., 1994, Highly
Parallel Computing, Benjamin Cummings Pub.

Co., Redwood City, CA.

Anderson, T., Culler, D. and Patterson, D.,

1995, "A Case for NOW(Networks of Worksta-

tions)," IEEE Micro, Vol. 15, No. 10, pp. 54--64.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W.,

Manchek, R. and Sunderam, V., 1994, PVM:

Parallel Virtual Machine-A User's Guide and
Tutorial for Networked Parallel Computing,
MIT Press, Cambridge, MA.

Kim, H. G., Seong, K. J. and Kim, S. H., 1996,

"A Numerical Experiment on Network Parallel

Computing Using PVM," Proc. o f KISS, Vol.

23, No. 2, pp. 1031--1034

McByran, O., 1994, "An Overview of Message

Passing Environments," Parallel Computing,
Voi. 20, pp. 417--444.

Meyers, G. E., 1971, Analytical Methods in
Conduction Heat Transfer, McGraw-Hil l , New

York, pp. 271--274.

Sunderam, V. S., 1990, "PVM: A Framework

for Parallel Distributed Computing," J. Concur-
rency, Vol. 2, No. 4, pp. 315--339.

