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A numerical study is performed to investigate the effect of task decomposition on networked 

parallel processes using Parallel Virtual Machine (PVM). In our study, a PVM program 

distributed over a network of workstations is used in solving a finite difference version of a one 

dimensional heat equation, where natural choice of PVM programming structure would be the 

master-slave paradigm, with the aim of finding an optimal configuration resulting in least 

computing time including communication overhead among machines. Given a set of  PVM tasks 

comprised of one master and five slave programs, it is found that there exists a pseudo-opt imal  

number of machines, which does not necessarily coincide with the number of tasks, that yields 

the best performance when the network is under a light usage. Increasing the number of 

machines beyond this optimal one does not improve computing performance since increase in 

communication overhead among the excess number of machines offsets the decrease in CPU 

time obtained by distributing the PVM tasks among these machines. However, when the network 

traffic is heavy, the results exhibit a more random characteristic that is explained by 1:he random 

nature of data transfer time. 

Key Words: Communication Overhead, Heat Equation, Networked Parallel Computing, 

Network Traffic, Optimal Task Decomposition, PVM 

I. Introduct ion  

Parallel processing, the method of having many 

small tasks solve one large problem, has recently 

received much attention with increasing demand 

for higher performance, lower cost and sustained 

productivity, and has emerged as a key enabling 

technology in modern computing. This adoption 

has been facilitated by two major developments: 

massively parallel processors (MPPs) and the 

widespread use of distributed computing. 

At present, MPPs provide the most powerful 

environment under which high computational  

power can be attained, combining a few hundred 

to a few thousand CPUs connected to hundreds of 

gigabytes of memory. (Alamasi and Gottlieb, 
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1994) However, MPPs suffer from two draw- 

backs: economy and availability. 

Large MPPs typically cost more than 10 mil- 

lion U. S. dollars. The cost in rurming programs 

on an MPP is usually more than tenfold compar- 

ed to that of running equivalent ones on a set of 

networked workstations. Aside from the price of 

MPPs, lack of effective compilers and application 

programming interfaces (APls) further restrict 

the availability of them to a lim:ited number of 

users and even then they might have to spend a 

considerable amount of time familiarizing them- 

selves with MPPs before they are ready to tackle 

real problems. (Anderson et al., 1995) 

On the other hand, distributed computing over 

networked workstations is gaining its edge over 

MPPs because of its widespread availability and 
economic advantage. Distributed ,computing pro- 

vides well defined APls easily applicable to vari- 

ous programs as well as effective compilers over a 

network of workstations, resulting in cost effec- 
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tive solutions. 

PVM (Parallel Virtual Machine) is one of the 

most promising distributed computing systems 

available, and may be applied to a network of 

heterogeneous workstations (Sunderam et. al. 

1990). PVM provides easy to program APIs 

through which complex and CPU intensive scien- 

tific problems, such as global climate modeling 

and new drug design, can be solved without 

relying on expensive MPPs by decomposing them 

into a set of simple tasks manageable on a work- 

station or even a PC. 

PVM, however, suffers from an inherent prob- 

lem of overhead due to communication between 

tasks, since each task in a PVM program needs to 

exchange data with others distributed over the 

network. A seemingly optimal decomposition in 

the traditional sense will not guarantee an opti- 

mal solution under the PVM environment, espe- 

cially if such decomposition entails more commu- 

nication overhead than performance gain. There- 

fore, it is necessary to investigate how a large 

problem should be decomposed into a set of PVM 

tasks which will produce the most performance 

gain taking into account the communication 

overhead. 

Objective of this study is not in any specific 

engineering problem itself but to perform a par- 

ametric numerical experiment with PVM on its 

performance by solving a transient one dimen- 

sional heat conduction problem. In this paper, we 

present our experience with PVM in pursuit of 

finding a pseudo-optimal decomposition of PVM 

tasks for the specific problem of a one dimen- 

sional heat diffusion. It will only be a pseudo 

-optimal, since communication overhead is 

affected by nondeterministic factors such as actual 

data transfer rate and the network load at time of 

execution. We will investigate how total execu- 

tion time of a finite difference program processed 

in parallel varies as number of homogeneous 

machines on a network is varied along with the 

effects of discretization size in both space and 

time. 

2. PVM: Parallel  Virtual Machine 

The past several years have witnessed an ever- 

increasing acceptance and adoption of parallel 

processing for high performance scientific 

computing. Furthermore, the message passing 

model appears to be gaining predominance as the 

paradigm choice of parallel programming. PVM 

is a software infrastructure that emulates a gener- 

alized distributed memory multiprocessor in het- 

erogeneous networked environment. PVM sup- 

ports a straightforward but functionally complete 

message passing model (McByran, 1994), and is 

capable of harnessing the combined resources of 

typically heterogeneous networked computing 

platforms to deliver high levels of performance 

and functionality. 

Parallel computing using PVM may be approa- 

ched from three fundamentally different view- 

points based on the organization of computing 

tasks. (Kim et al. 1996) The first and the most 

common model for PVM applications can be 

termed crowd computing, where a collection of 

loosely related processes, typically executing the 

same code, performs computations on different 

portions of the workload usually involving peri- 

odic exchanges of intermediate results. The sec- 

ond model supported by PVM is termed a tree 

computation, in this scenario, processes are 

dynamically spawned in a tree-like manner. This 

paradigm is a natural fit to applications where the 

total workload is not known a priori, for example 

as in recursive divide-and-conquer algorithms. 

The third model termed hybrid is a combination 

of the tree and the crowd model. 

As mentioned above, PVM provides various 

methods of task decomposition that fit into mod- 

eling of diverse scientific problems as well as 

those of general purpose. These models assume 

that any PVM task can send a message to any 

other task and that there is no limit to the size or 

number of such messages. It also supports 

multicast of a message to a user defined group of 

tasks. The choice of model will be application 

dependent, and should be selected to best match 

the natural structure of the parallelized program, 
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while taking into account the communication 

overhead. Skeleton of the actual PVM program 

used in our experiment is presented below, and 

can be used as an example to understand PVM 

user interfaces, but readers should refer to PVM 

user's manual (e. g. Geist et al., 1994) for com- 

plete understanding of PVM APls. 

3. Numerical Experiment with 
Heat Equation 

In this section we present a PVM program that 

calculates heat diffusion in a thin wire by solving 

the finite difference version of  a one dimensional 

heat equation. To accomplish our aim, as 

mentioned in the introduction, it suffices that we 

choose to analyze a most simple problem prefer- 

ably to which an analytic solution is also avail- 

able. 

Consider a thin wire of length L, density p, 

specific heat c and thermal conductivity k with 

the ends of the wire maintained at a fixed temper- 

ature of  Te and an initial temperature profile of: 

�9 [ \ 2 :  
T (z, r = O ) =  T~ + To sln~Tc~-) (1) 

With the usual non-dimensionalizat ion,  where A 

= ( T -  Te) / To, t = r / L2( ~ - )  and x = z /  L,  tem - 

perature in the wire is described by the following 

heat equation; 

32A 3A  
3x 2 3t (2) 

with the initial and boundary conditions of; 

A (x, t : 0 )  = s i n  (zcx) (3a) 

A ( x = 0 ,  t) = A  ( x =  l, t) = 0  (3b) 

The exact solution of Eq. (2) subject to (3a) and 

(3b) can be found by the method of separation of 

variables as (Meyers, 1971); 

A (x, t) = e -~2' s i n ( zx )  (4) 

Finite-difference solution to the above problem 

will be sought via parallel processing and in 

particular through distributed computing using 

the PVM program. 

We will adopt an explicit scheme with forward 

differencing in time and central differencing in 

space, and hence the solution can be obtained by 

marching in time from a given initial temperature 

distribution. If we denote A (xl, 6) as Ai,j, tem- 

perature at position x; and at time tj+l can be 

expressed as; 

A~,j+ 1 = ~' (Ai+,,~ + A i-I.A 
+ ( 1 - 2 ~ ) A i . ~  (5) 

A t  where ~ - - - - - ~ -  and the stability criterion for 

the explicit scheme requires that / ~ 1 / 2 .  

For  our problem, where the solution over the 

whole space can be obtained through the same 

equation as provided by Eq. (5), natural choice 

of programming structure would be the master- 

slave method of  the crowd programming para- 

digm where the slaves, spawned by the master 

program, perform the actual computations. We 

choose to divide the wire into 5 subsections, and 

the solutions to each subsection will be obtained 

separately by each slave programs, although it 

will be required that the right most and the left 

most temperature information be exchanged with 

its right and left neighboring subsections. The 

workload of the slaves are allocated by the master 

through data decomposition whereby the initial 

temperature distribution of each subsection is sent 

to respective slaves. 

Overall structure of the parallel processing is as 

follows: 

The master program spawns 5 copies of  the 

same slave program, each of which handles a 

subsection of the wire. After receiving initial 

temperature distribution, each slave computes 

heat diffusion in the corresponding wire subsec- 

tion. At each time step, each slave program needs 

to communicate boundary information with its 

left and right neighboring slaves. When a speci- 

fied final time is reached, all 5 slave programs 

send its final temperature profile to the master, 

who then terminates the spawned slaves and ends 
the program. 

In order to study the effect of  communication 

overhead on the total CPU time, same program 

was executed on 1 to 6 machines on the network. 

When only one machine is used, the master 

program along with all of the five slaves are 
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executed on the same processor on the same 

machine, in which case there is no additional time 

spent in communication over the network and can 

be regarded as a serial processing. When more 

than one machine is utilized, the master and the 

slave programs are allocated to each machine 

such that an even distribution of workload is 

achieved. For example, with four machines, the 

first machine handles the master program along 

with one of the five slaves and the second 

machine handles two slaves with the remaining 

two each executing one slave program. 

The finite difference PVM program was execut- 

ed on six different configurations as mentioned 

above with four values of Ax ranging from 1/50 

to 1/1000 and four a t's for each Ax ranging 

from 2.0;< 10 -4 to 6.25• 10 -8 until a preset final 

time is reached. The final time was chosen such 

that for each different Ax, the largest A t  

results in 750 iterations and the smallest 61300. 

Hence for a given Ax, total number of iterations 

on Eq. (5) is inversely proportional to the size of 

a t. The final temperature profile for all of the 

above parameter values resulted in essentially the 

analytic solution of Eq. (4). The total computing 

time elapsed in carrying out this numerical experi- 

ment on a network of Sun Sparc workstations 

were recorded and are analyzed in the following 

section. 

4. Results  and Discuss ions  

ronment. 

4.1 D a t a  c o m m u n i c a t i o n  overhead  
To investigate the effect of data transfer over 

the network on the total computing time, time 

taken solely in data transfer between machines 

were investigated and the results are presented in 

Fig. 1. This includes time taken for PVM setup 

plus network latency and data transmission. In 

both cases of light and heavy traffic, it can be seen 

that the increase in the amount of data will not 

necessarily result in a larger communication over- 

head but will be strongly dependent on the num- 

ber of machines on the network. This is especially 

true when the traffic is light whereas under heavy 

traffic conditions it exhibits a more random 

nature as may be expected. However the results of 
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Results analyzed in this section are obtained 

from a group of networked Sun Sparc Classic 

workstations running on Sun OS 4.2. Total 

computing time, including data communication 

overhead between machines, will definitely 

depend on the degree of network usage at the time 

of execution and numerical experiments were 

carried out under two different conditions; 1) 

when the network is under a light usage during 

night time which will be referred to as 'light 

traffic' and 2) at day time when the network is 

under a typical usage of a university engineering 

department referred to as 'heavy traffic'. Results 

used in the analysis below are only one out of 

many trials executed under similar working envi- 
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Fig. 1 Communication time between machines 
for data transfer. 
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Fig. 1 clearly show that data communica t ion  time 

is bounded,  at least with PVM and data transfer 

between 2 to 6 machines. One can also deduce 

that the PVM setup time is about  190 ms for our  

experimental  envi ronment  and the data transfer 

time exhibits some randomness  reflecting the 

characteristics of Ethernet. 

4.2 Total  computation time 
Figs. 2 and 3 describe the total computa t ion  

time versus the number  of machines utilized by 

the PVM program under light and heavy traffic 

condi t ions  respectively. The most important  result 

is that for all cases under  light traffic, there seems 

to exist a pseudo-opt imal  configurat ion,  i. e. least 

computa t ion  time, of N P : 4 ,  5 or 6. And  this 

p seudo-op t imum becomes more pronounced as 

computa t ion  load increases (see Fig. 2 (d)) .  This 

can be explained by the fact that total computa-  

t ion time is comprised of actual CPU time, which 

decreases as more machines are utilized and 

workload is more evenly distributed, and commu- 

nicat ion overhead, which increases with NP as 

more data transfers are required between more 

machines. Hence total computat ion time is the 

least when gains obtained from work dis tr ibut ion 

minus the increase in communica t ion  overhead is 

the largest. For  our problem it can be concluded 

that this opt imum configurat ion is obtained when 

4 to 6 machines are utilized. It should be remem- 

bered that this analysis is based on the fact that 

the programs were executed under  light traffic 

condi t ions  and data transfer time is almost con- 

stant (see Fig. 1 (a)) .  Also, we can conclude that 
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Total computing time, T, under light traffic condition as a function of the number of machines, NP, 
utilized by the task. N P =  1 corresponds to serial processing without communication overhead. 
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Total computing time, T, under heavy trafic condition as a function of the number of machines, NP, 
utilized by the task. NP=I  corresponds to serial processing without communication overhead. 

our problem is such that communication over- 

head is of comparable order to actual CPU time, 

especially when computation burden is not low 

(e. g. for small z~x) and hence different types of 

configuration do play an important role regard- 

ing total computation time. 

When the traffic is heavy and communication 

overhead is random as depicted in Fig. l (b), total 

computation time presented in Fig. 3 is also 

random. When the computation load is light total 

computation time shows almost no visible varia- 

tions with respect to the number of machines 

utilized. However, even under heavy traffic per- 

formance, it is seen to improve when workload is 

distributed compared to a single machine configu- 

ration and especially so when the computation 

burden is high. 

4.3 Conclusions 
In this study we performed a numerical experi- 

ment over a workstation cluster connected by 

Ethernet using PVM to solve a simple one dimen- 

sional heat equation with the purpose of inves- 

tigating how communication overhead affects the 

total computation time and obtaining, if any, a 

pseudo-opt imal  configuration and task decompo- 

sition. We found that the total computation time 

including communication overhead shows quali- 

tatively different characteristics depending on the 

network usage at the time of program execution. 

When the traffic is light and data transfer time is 

relatively constant, there seems to exit an optimal 

task decomposition set by decrease in CPU time 

and increase in communication overhead as more 

machines are utilized. However, when the traffic 
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is heavy with data transfer time being more ran- 

dom, total computat ion time is also random 

without any systematic improvement as workload 

is distributed among more machines. But it is 

clear that in most of the cases studied, parallel 

computation is no worse than serial computation 

in the worst case and shows some improvement 

over serial computation in many cases. 

Although the purpose of our study is in obtain- 

ing the optimal task decomposition of PVM tasks 

under Ethernet which is widely available and not 

in finding the best network environment for PVM 

programming, it is worth mentioning that the 

results of our experiment will be strongly depen- 

dent on the types of network subsystems such as 

the ring or the ATM- l ike  switch based network 

which will display different characteristics of the 

program behavior. From our experience with 

PVM under Ethernet environment, we find that 

when communication overhead is of comparable 

order as CPU time, which may by true for many 

types of problems, performance gains from an 

optimal task decomposition compared to a more 

heuristic one is such that it may not warrant an 

exhaustive investigation unless the program is to 

be executed under the network condition where a 

light traffic is expected. 
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